PREDIKSI PERILAKU POLA JUMLAH MAHASISWA MENGGUNAKAN JARINGAN SYARAF TIRUAN DENGAN METODE BACKPROPAGATION
Abstrak
Abstrack - This study aims to predict the behavior of student patterns so that they can predict based on the number of students. To achieve optimal output, this study uses Artificial Neural Networks with the Backpropagation method. Case study conducted at the Asahan University Faculty of Engineering. The data used are data on the number of students in the academic year 2011 to 2013 as training data and 2014 school year data until 2016 as testing data. Furthermore, the data is analyzed with several network architectural patterns and the best patterns will be selected to be implemented into the Matlab R2010 program. The system results show a correlation between the number of students that occurred. Â Keywords - Prediction, Artificial Neural Networks, Backpropagation Method, Number of StudentsReferensi
Iriansyah BM Sangadji (2009). “Prediksi Perilaku Pola Mahasiswa Terhadap Pada Toko Buku Gramedia Menggunakan Jaringan Syaraf Tiruan Metode Back Propagation.†Jurnal Informatika. 5. 135-150.
Muhammad Dahria (2008). “Kecerdasan Buatan (Artificial Intelligence).†Jurnal Saintikom. 5. 185-196.
Sumijan dan Julius Santony (2012). “Jaringan Syaraf Tiruan menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Mahasiswa di Lingkungan Kopertis Wilayah X (Sumbar, Riau, Jambi dan Kepri).†Seminar Nasional Teknologi Informasi Universitas Diponegoro Semarang.
Shinta Puspasari dan Alfan Sucipta (2012). “Analisis Implementasi Algoritma Propagasi Balik Pada Aplikasi Identifikasi Wajah Secara Waktu Nyata.†Prosiding Seminar Ilmiah Nasional Komputer dan Sistem Intelijen (KOMMIT 2012). 7. 405-411.
Wahyudi Setiawan (2008). “Prediksi Harga Saham Menggunakan Jaringan Syaraf Tiruan Multilayer Feedforward Network Dengan Algoritma Backpropagation.†Konferensi Nasional Sistem dan Informatika. 108-113.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Â
Â
Â
JurTI (Jurnal Teknologi Informasi)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Owner : SK