PENERAPAN MODEL MATEMATIKA ALGORITMA ANT COLONY OPTIMIZATION DALAM PENENTUAN RUTE BUS TRANS BANYUMAS

Yogo Dwi Prasetyo, Abira Massi Armond, Wahyurini Ediningrum

Abstract


Travelling Salesman Problem (TSP) adalah upaya salesman untuk mengunjungi setiap kota tepat satu kali dan kemudian kembali ke tempat asal sekaligus meminimalisasi total biaya yang ditempuh. Siklus Hamilton adalah siklus yang melalui setiap simpul di dalam graf tepat satu kali dan kembali ke simpul asal. TSP mencoba mencari jarak optimal siklus Hamilton dari graf. Trans Banyumas beroperasi dengan mengunjungi semua tempat pemberhentian bus dan kembali ke titik awal. Penelitian ini menerapkan algoritma Ant Colony Optimization (ACO) untuk menentukan rute optimal bus Trans Banyumas. Perhitungan algoritma ACO secara manual pada penelitian ini menggunakan 2 semut. Selanjutnya dilakukan komputasi menggunakan software Matlab dengan 25 sampel halte bus Trans Banyumas di Koridor 3.


Full Text:

PDF

References


Chitty, D. M. (2017). Applying ACO To Large Scale TSP Instances. Department of Computer Science. 1–15.

Chowdhury, S., Marufuzzaman, M., Tunc, H., Bian, L., & Bullington, W. (2019). A modified Ant Colony Optimization algorithm to solve a dynamic traveling salesman problem : A case study with drones for wildlife surveillance. Journal of Computational Design and Engineering, 6(3), 368–386.

Giovanni Calabrò, Giuseppe Inturri, Michela Le Pira, Alessandro Pluchino, Matteo Ignaccolo. (2020). Bridging the gap between weak-demand areas and public transport using an ant-colony simulation-based optimization, Transportation Research Procedia, 45, Pages 234-241, ISSN 2352-1465.

Hlaing, Z. C. S. S., & Khine, M. A. (2011). Solving Traveling Salesman Problem by Using Improved ACO. International Journal of Information and Education Technology, 1(5), 404–409.

Lizhi Chen, Wei-Li Liu, Jinghui Zhong. (2022). An efficient multi-objective ant colony optimization for task allocation of heterogeneous unmanned aerial vehicles, Journal of Computational Science, 58, 101545, ISSN 1877-7503.

Mahfoud, S., Derouich, A., Iqbal, A., & El, N. (2022). ANT-colony optimization-direct torque control for a doubly fed induction motor : An experimental validation. Energy Reports, 8, 81–98.

Olivas, F., Valdez, F., Castillo, O., Gonzalez, C. I., Martinez, G., & Melin, P. (2016). Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Applied Soft Computing Journal.

Shan-Huen Huang, Ying-Hua Huang, Carola A. Blazquez, Chia-Yi Chen. (2022). Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm, Advanced Engineering Informatics, 51, 101536, ISSN 1474-0346.

Shi, Y., & Zhang, Y. (2022). The neural network methods for solving Traveling Salesman Problem Problem. Procedia Computer Science, 199, 681–686.

Wang, Y., & Han, Z. (2021). Ant colony optimization for traveling salesman problem based on parameters optimization. Applied Soft Computing, 107, 107439.




DOI: https://doi.org/10.36294/jmp.v7i1.2701

Refbacks

  • There are currently no refbacks.