Bernas: Jurnal Penelitian Pertanian

2023, 19(3), 107–115

Pengaruh lama perendaman media hidrogel dan konsentrasi pupuk daun gandasil D terhadap pertumbuhan tanaman aglaonema (Aglaonema sp)

Devi Yusriani Siregar

Universitas Asahan, Kisaran, Sumatera Utara, Indonesia, 21224

Ansoruddin*

Universitas Asahan, Kisaran, Sumatera Utara, Indonesia, 21224

Noverina Chaniago

Universitas Islam Sumatera Utara, Medan, Sumatera Utara, Indonesia, 20217

*Corresponding Author: ansoruddinharahap@gmail.com

Abstract. The research was conducted in Lima Puluh Kota II Environment, Lima Puluh District, Batu Bara Regency, North Sumatra Province. In August to September 2020. This study aims to determine the effect of the duration of hydrogel media immersion and the concentration of Gandasil D leaf fertilizer on the growth of aglaonema plants. This study used a Factorial Randomized Block Design (RAK) with two factors, namely: (1) Duration of hydrogel media immersion (G) consists of 3 levels: G1 = 60 minutes, G2 = 120 minutes, G3 = 180 minutes. (2) The concentration of Gandasil D leaf fertilizer (P) consists of 3 levels: P1 = 10 gr/liter of water. P2 = 20 gr/liter of water, P3 = 30 gr/liter of water. The observed variables were the increase in plant height (%), number of leaves (blades), root length (cm), root weight (%). The results showed that the effect of the duration of hydrogel media immersion did not significantly affect the increase in plant height at all observed ages, the number of leaves at 2 and 4 MST, and root weight. The effect of the duration of hydrogel media immersion had a significant effect on the number of leaves at 6 MST. The effect of the duration of hydrogel media immersion had a very significant effect on root length. The concentration of Gandasil D leaf fertilizer had no significant effect on the increase in plant height at all observed ages and root weight. The concentration of Gandasil D leaf fertilizer had a significant effect on the number of leaves at 6 MST and root length. The interaction between the duration of hydrogel media immersion and the concentration of Gandasil D leaf fertilizer on the growth of aglaonema plants had no significant effect.

Keywords: Hydrogel; Gandasil; Aglaonema

Historis Artikel:

Dikirim: 30 Agustus 2023 Direvisi: 10 Oktober 2023 Disetujui: 29 November 2023

PENDAHULUAN

Tanaman Aglaonema sp merupakan tanaman hias primadona di Indonesia. Tanaman Aglaonema sp mempunyai nama lain seperti Chinese Evergreen, karena orang yang pertama kali membudidayakannya adalah orang Cina. Hat Deleon dari USA hasil persilangan Aglaonema custisii dan Aglaonema treubi. Aglaonema hibrida yang dihasilkan diberi nama Aglaonema Silver Queen (Leman, 2006). Tanaman Aglaonema sp dimanfaatkan sebagai tanaman penghias ruangan, karena keindahan dari tanaman ini yaitu terletak pada bentuk, corak, dan warna daunnya (Wahyudi et al., 2014).

Aglaonema termasuk salah satu jenis tanaman yang bisa tumbuh di sudut-sudut ruangan yang gelap. Tanaman ini tumbuh baik di tempat yang mendapat sinar matahari. Tetapi memiliki daya adaptasi yang baik terhadap tempat yang kurang cahaya. Oleh karena itu, Aglaonema sangat cocok sebagai tanaman hias dalam ruangan (AS. Sudarmono, 1997)

Pertanian yang aman dan ramah lingkungan sangat diharapkan oleh masyarakat Indonesia. Salah satunya yaitu dengan menggunakan media tanam hidrogel. Hidrogel merupakan media tanam yang Cara sitasi:

Siregar, D. Y., Ansoruddin, A., & Chaniago, N. (2023). Pengaruh lama perendaman media hidrogel dan konsentrasi pupuk daun gandasil D terhadap pertumbuhan tanaman aglaonema (Aglaonema sp). *Bernas: Jurnal Penelitian Pertanian*, 19(3), 107–115.

berbahan dasar keraginan yang dihasilkan oleh alga. Selain digunakan dalam sistem pertanian biasanya hidrogel dapat diterapkan pada media tanam untuk tanaman indoor karena keunikan warna-warna yang menarik seperti kristal.

Hidrogel merupakan cara bertanam tanpa menggunakan media tanah. Media yang digunakan adalah media non tanah baik yang berupa bahan organik maupun anorganik, yang berfungsi sebagai media perakarannya. Dalam hidrogel pemberian air mineral sebagai sumber nutrisi bagi tanaman (Prihmanto, 1995) (Faisal, Nintya, dan Munifatul, 2006). Pemberian pupuk melalui daun lebih efektif, karena unsur hara makro yang dikandungnya cepat diserap, sehingga memacu pertumbuhan dan meningkatkan efesiensi metabolisme daun (Sarief, 1993).

Salah satu pupuk daun yang mengandung hara makro dan mikro adalah Gandasil D. Untuk mendapatkan hasil yang optimal dari penggunaan pupuk daun, maka faktor yang sangat penting diperhatikan adalah konsentrasi dan interval pemberiannya (Mariyatul Qibtyah, 2015).

Berdasarkan hal yang diuraikan, diperoleh suatu pemikiran untuk melakukan penelitian tentang "Pengaruh Lama Perendaman Media Hidrogel Dan Konsentrasi Pupuk Daun Gandasil D Terhadap Pertumbuhan Tanaman Aglaonema (Aglaonema sp)" yang diharapkan dapat memberikan informasi guna membantu mengembangkan budidaya tanamanAglaonema.

METODE PENELITIAN

Penelitian dilaksanakan di Lingkungan II Limapuluh, Kec.Limapuluh, Kab. Batu Bara, Provinsi Sumatera Utara. Pada bulan Maret 2020 sampai dengan April 2020. Bahan yang digunakan pada penelitian ini adalah tanaman aglaonema, hidrogel, pupuk daun Gandasil D, air dan bahan lain yang mendukung. Alat yang digunakan pada penelitian ini adalah meteran, timbangan analitik, kamera, plang perlakuan, alat tulis, kalkulator dan peralatan lain yang dianggap dibutuhkan. Penelitian ini disusun berdasarkan Rancangan Acak Kelompok (RAK) Faktorial dengan dua faktor perlakuan dan tiga ulangan, (1) Lama perendaman media hidrogel (G) terdiri dari 3 taraf: G1 = 60 menit, G2 = 120 menit, G3 = 180 menit. (2) Konsetrasi pupuk daun Gandasil D (P) terdiri dari 3 taraf: P1 = 10 gr/liter air, P2 = 20 gr/liter air, P3 = 30 gr/liter air.

HASIL DAN PEMBAHASAN

Hasil Penelitian

Panjang Tanaman (cm)

Dari hasil sidik ragam dapat dilihat bahwa lama perendaman media hidrogel, konsentrasi pupuk daun Gandasil D dan interaksi lama perendaman media hidrogel dengan konsentrasi pupuk daun Gandasil D tidak berpengaruh nyata terhadap pertambahan tinggi tanaman aglaonema pada semua umur amatan.

Hasil uji beda rata-rata pengaruh lama perendaman media hidrogel dan konsentrasi pupuk daun Gandasil D terhadap tinggi tanaman aglaonema umur 6 minggu setelah tanam dapat dilihat pada Tabel 1

Tabel 1.Hasil Uji Beda Rata-rata Pengaruh Lama Perendaman Media Hidrogel dan Konsentrasi Pupuk Daun Gandasil D terhadap Pertambahan Tinggi Tanaman Aglaonema (%) Umur 6 MST.

G/P	P ₁	P_2	P ₃	Rataan
G ₁	11,70 a	13,68 a	13,45 a	12,94 a
G_2	12,86 a	14,37 a	12,41 a	13,21 a
G ₃	12,73 a	13,25 a	12,48 a	12,82 a
Rataan	12,43 a	13,77 a	12,78 a	KK=18,89%

Keterangan:

Angka-angka yang diikuti huruf yang sama pada baris atau kolom yang sama menunjukkan berbedatidak nyata pada taraf 5 % dengan menggunakan Uji BNJ.

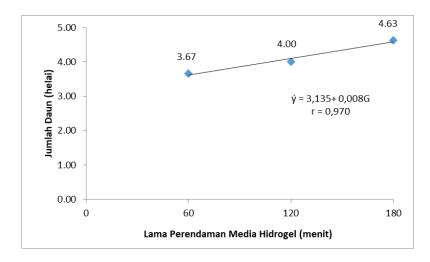
Dari Tabel 1. dapat dilihat bahwa lama perendaman media hidrogel menunjukkan tidak berpengaruh nyata terhadap pertambahan tinggi tanaman aglaonema, secara visual pertambahan tinggi tanaman tertinggi terdapat pada perlakuan 120 menit (G_2) yaitu 13,21 %. Konsentrasi pupuk Gandasil D menunjukkan tidak berpengaruh nyata terhadap pertambahan tinggi tanaman aglaonema, secara visual pertambahan tinggi tanaman tertinggi terdapat pada perlakuan 20 gr/liter air (P_2) yaitu 13,77 %. Interaksi antara lama perendaman media hidrogel dan konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata. Secara visual pertambahan tinggi tanaman tertinggi diperoleh pada kombinasi perlakuan G_2P_2 yaitu 14,37 %.

Jumlah Daun (helai)

Dari hasil sidik ragam dapat dilihat bahwa jumlah daun tanaman aglaonema terhadap lama perendaman media hidrogel tidak berpengaruh nyata pada umur 2 MST dan 4 MST. Tetapi jumlah daun tanaman aglaonema berpengaruh nyata terhadap lama perendaman media hidrogel pada umur 6 MST. Konsentrasi pupuk daun Gandasil D tidak berpengaruh nyata terhadap jumlah daun tanaman aglaonema pada umur 2 MST dan 4 MST. Konsentrasi pupuk daun Gandasil D berpengaruh nyata terhadap jumlah daun pada umur 6 MST. Interaksi lama perendaman media hidrogel dengan konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata terhadap jumlah daun tanaman aglaonema pada semua umur amatan.

Hasil uji beda rata-rata pengaruh lama perendaman media hidrogel dan konsentrasi pupuk daun Gandasil D terhadap jumlah daun tanaman aglaonema umur 6 minggu setelah tanam dapat dilihat pada Tabel 2.

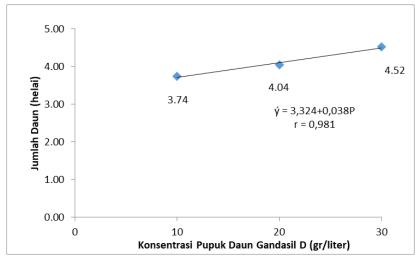
Tabel 2.Hasil Uji Beda Rata-rata Pengaruh Lama Perendaman Media Hidrogel dan Konsentrasi Pupuk Daun Gandasil D terhadap Jumlah Daun Tanaman Aglaonema (helai) Umur 6 MST


G/P	P ₁	P_2	P ₃	Rataan
G ₁	3,22 a	3,56 a	4,22 a	3,67 b
G_2	4,01 a	3,89 a	4,11 a	4,00 a
G_3	4,00 a	4,67 a	5,22 a	4,63 a
Rataan	3,74 b	4,04 a	4,52 a	KK=14,97%

Keterangan:

Angka-angka yang diikuti huruf yang sama pada baris atau kolom yang sama menunjukkan berbedatidak nyata pada taraf 5 % dengan menggunakan Uji BNJ.

Dari Tabel 2. dapat dilihat bahwa lama perendaman hidrogel menunjukkan berpengaruh nyata terhadap jumlah daun tanaman aglaonema, secara visual jumlah daun terbanyak terdapat pada perlakuan 180 menit (G₃) yaitu 4,63 helai. Perlakuan 180 menit (G₃) tidak berbeda nyata dengan perlakuan 120 menit (G₂) yaitu 4,00 helai, tetapi berbeda nyata dengan perlakuan 60 menit (G₁) yaitu 3,67 helai.


Pengaruh lama perendaman media hidrogel terhadap jumlah daun umur 6 MST menghasilkan analisis regresi linier dengan persamaan \circ = 3,135 + 0,008G dengan r = 0,970 dan dapat dilihat pada Gambar 1.

Gambar 1.Kurva Pengaruh Lama Perendaman Media Hidrogel terhadap Jumlah Daun Tanaman Aglaonema Umur 6 MST (helai)

Selanjutnya dari Tabel 2. dapat dilihat bahwa konsentrasi pupuk Gandasil D berpengaruh nyata terhadap jumlah daun pada umur tanaman 6 MST, secara visual jumlah daun tanaman aglaonema terbanyak terdapat pada perlakuan 30 gr/liter air (P_3) yaitu 4,52 helai. Perlakuan P_3 tidak berbeda nyata dengan perlakuan P_2 yaitu 4,04 helai, tetapi berbeda nyata dengan perlakuan P_1 yaitu 3,74 helai.

Pengaruh konsentrasi pupuk daun Gandasil D pada jumlah daun tanaman aglaonema pada umur 6 MST menghasilkan analisis regresi linier dengan persamaan \acute{y} = 3,324 + 0,038P dengan r= 0,981 dapat dilihat pada Gambar 2.

Gambar 2.Kurva Pengaruh Konsentrasi Pupuk Daun Gandasil D terhadap Jumlah Daun Tanaman Aglaonema Umur 6 MST (helai)

Interaksi antara lama perendaman media hidrogel dan konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata. Secara visual jumlah daun tanaman aglaonema terbanyak diperoleh pada kombinasi perlakuan G₃P₃ yaitu 5,22 helai

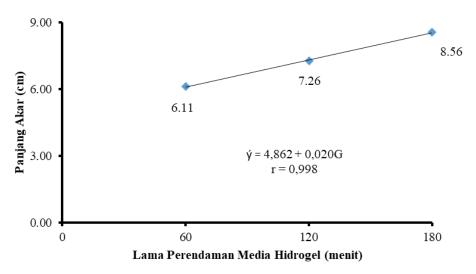
Panjang Akar (cm)

Dari hasil sidik ragam menunjukkan bahwa lama perendaman media hidrogel berpengaruh sangat nyata terhadap panjang akar tanaman aglaonema umur 6 MST. Konsentrasi pupuk daun Gandasil D

berpengaruh nyata terhadap panjang akar tanaman aglaonema umur 6 MST. Interaksi lama perendaman media hidrogel dengan konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata pada umur 6 MST.

Hasil uji beda rata-rata pengaruh lama perendaman media hidrogel dan konsentrasi pupuk daun Gandasil D terhadap panjang akar tanaman aglaonema umur 6 minggu setelah tanam dapat dilihat pada Tabel 3.

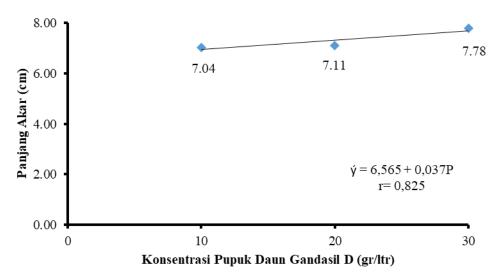
Tabel 3.Hasil Uji Beda Rata-rata Pengaruh Lama Perendaman Media Hidrogel dan Konsentrasi Pupuk Daun Gandasil D terhadap Jumlah Daun Tanaman Aglaonema (helai) Umur 6 MST


G/P	P ₁	P_2	P ₃	Rataan
G ₁	5,89 a	6,00 a	6,44 a	6,11 c
G_2	6,44 a	7,22 a	8,11 a	7,26 b
G_3	8,78 a	8,11 a	8,78 a	8,56 a
Rataan	7,04 b	7,11 a	7,78 a	KK= 7,15%

Keterangan:

Angka-angka yang diikuti huruf yang sama pada baris atau kolom yang sama menunjukkan berbedatidak nyata pada taraf 5 % dengan menggunakan Uji BNJ.

Dari Tabel 3. dapat dilihat bahwa lama perendaman hidrogel menunjukkan pengaruh yang sangat nyata terhadap panjang akar tanaman aglaonema, secara visual panjang akar terpanjang terdapat pada perlakuan 180 menit (G₃) yaitu 8,56 cm. Perlakuan G₃ sangat berbeda nyata dengan perlakuan G₁ yaitu 6,11cm dan G₂ yaitu 7,26 cm.


Pengaruh lama perendeman media hidrogel terhadap panjang akar tanaman aglaonema umur 6 MST menghasilkan analisis regresi linier dengan persamaan \circ = 4,862 + 0,020G dan r= 0,998. Dapat dilihat pada Gambar 3.

Gambar 3.Kurva Pengaruh Lama Perendaman Media Hirogel terhadap Panjang Akar Tanaman Aglaonema Umur 6 MST (cm)

Selanjutnya dari Tabel 3. dapat dilihat bahwa konsentrasi pupuk daun Gandasil D menunjukkan berpengaruh nyata terhadap panjang akar tanaman aglaonema, secara visual panjang akar tanaman aglaonema terpanjang terdapat pada perlakuan 30 gr/liter air (P_3) yaitu 7,78 cm. Perlakuan P_3 tidak berbeda nyata dengan perlakuan P_2 yaitu 7,11 cm. Tetapi berbeda nyata dengan perlakuan P_1 yaitu 7,04 cm.

Pengaruh Konsentrasi pupuk daun terhadap panjang akar tanaman aglaonema umur 6 MST menghasilkan analisis regresi linier dengan persamaan \acute{y} = 6,565 + 0,037P dan r = 0,825 , dapat dilihat pada Gambar 4.

Gambar 4.Kurva Pengaruh Konsentrasi Pupuk Daun Gandasil D terhadap Panjang Akar Tanaman Aglaonema Umur 6 MST (cm)

Interaksi antara lama perendaman hidrogel dan konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata . Secara visual jumlah daun tanaman aglaonema terbanyak diperoleh pada kombinasi perlakuan G_3P_3 yaitu 8,78 cm.

Bobot Akar (%)

Dari hasil analisis sidik ragam menunjukkan bahwa bobot akar tanaman aglaonema terhadap lama perendaman media hidrogel, konsentrasi pupuk daun Gandasil D dan interaksi lama perendaman media hidrogel dengan konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata pada umur 6 MST.

Hasil uji beda rata-rata pengaruh lama perendaman media hidrogel dan konsentrasi pupuk daun Gandasil D terhadap bobot akar tanaman aglaonema umur 6 minggu setelah tanam dapat dilihat pada Tabel 4.

Tabel 4.Hasil Uji Beda Rata-rata Pengaruh Lama Perendaman Media Hidrogel dan Konsentrasi Pupuk Daun Gandasil D terhadap Bobot Akar Tanaman Aglaonema (%) Umur 6 MST.

G/P	P ₁	P_2	P ₃	Rataan
G ₁	44,02 a	38,80 a	34,63 a	39,15 a
G_2	41,08 a	35,69 a	37,28 a	38,02 a
G_3	36,90 a	49,36 a	41,90 a	42,72 a
Rataan	40,67 a	41,28 a	37,94 a	KK=18,50%

Keterangan:

Angka-angka yang diikuti huruf yang sama pada baris atau kolom yang sama menunjukkan berbedatidak nyata pada taraf 5 % dengan menggunakan Uji BNJ.

Dari Tabel 4. dapat dilihat bahwa lama perendaman hidrogel menunjukkan tidak pengaruh nyata terhadap bobot akar tanaman aglaonema, secara visual bobot akar terbesar terdapat pada perlakuan 180 menit (G₃) yaitu 42,72%. Konsentrasi pupuk Gandasil D menunjukkan tidak berpengaruh nyata

terhadap bobot akar tanaman aglaonema, secara visual bobot akar tanaman aglaonema terbesar terdapat pada perlakuan 20 gr/liter air (P₂) yaitu 41,28%. Interaksi antara lama perendaman hidrogel dan konsentrasi pupuk daun Gandasil D menunjukkan pengaruh yang tidak nyata . Secara visual bobot akar tanaman aglaonema terbesar diperoleh pada kombinasi perlakuan G₃P₂ yaitu 49,36%.

Dari pengamatan diatas dapat dilihat bahwa bobot akar berpengaruh terhadap pertumbuhan tanaman aglaonema. Lebih besar bobot akar maka tanaman lebih subur.

Pembahasan

Pengaruh Lama Perendaman Media Hidrogel Terhadap Pertumbuhan Tanaman Aglaonema (Aglaonema sp) Indoor

Pengaruh lama perendaman media hidrogel menunjukkan tidak berpengaruh nyata pada pengamatan pertambahan tinggi tanaman semua umur tanaman dan bobot akar. Pada pengamatan jumlah daun, pengaruh lama perendaman media hidrogel tidak berpengaruh nyata pada umur tanaman 2 MST dan 4 MST. Tetapi berpengaruh nyata pada umur tanaman 6 MST. Dan pada pengamatan panjang akar, pengaruh lama perendaman media hidrogel berpengaruh sangat nyata pada umur tanaman 6 MST.

Pengaruh lama perendeman media hidrogel tidak berpengaruh nyata terhadap pertambahan tingggi tanaman dan bobot akar diduga karena perlakuan perendaman hidrogel yang belum tercukupi. Lama perendaman hidrogel menyebabkan hidrogel belum mengembang secara sempura sehingga kemampuan menyimpan airnya tidak maksimal dan mudah kehilangan bobot airnya. Kehilangan bobot air ini menyebabkan pertambahan tinggi tanaman dan bobot akar tanaman ikut terhambat. Selain itu penempatan hidrogel dalam jumlah dan pada kedalaman (wadah atau pot yang digunakan) kurang efektif.

Pengaruh lama perendaman media hidrogel berpengaruh nyata terhadap jumlah daun karena salah satu fungsi dari hidrogel yaitu sebagai komponen Nitrogen. Unsur N (Nitrogen) dibutuhkan untuk tanaman aglaonema. Nitrogen akan memacu pertumbuhan daun.

Pengaruh lama perendaman media hidrogel berpengaruh sangat nyata terhadap panjang akar dikarenakan fungsi dari hidrogel, dimana hidrogel memiliki cukup air dan nutrisi yang sehingga mengoptimalkan penyerapan akar. Selain itu Ukuran hidrogel yang lebih besar dapat mempengaruhi penyedian ruang yang lebih besar pula untuk pengakaran tanaman. Dapat dilihat dari hasil pengamatan bahwa panjang akar terpanjang terdapat pada perlakuan 180 menit (G3) yaitu 8,56 cm.

Hidrogel berfungsi menyerap dan menyimpan air nutrisi untuk tanaman dalam jumlah besar. Hidrogel tidak larut dalam air tetapi hanya menyerap dan akan melepaskan air dan nutrisi secara proposional pada saat dibutuhkan tanaman. Ketika lingkungan mulai kering, hidrogel membantu mengurangi konsumsi air dan frekuensi penyiraman tanaman.

Pengaturan ukuran hidrogel dalam media tanam sangat diperlukan, karena dapat mempercepat proses penyerapan air dan penyimpanan air media. Selain itu ukuran gel juga mempengaruhi penyediaan ruang untuk perakaran tanaman. Keuntungan lain penggunaan gel dapat diberi pewarna sehingga dapat mempercantik untuk media tanam hias (Faisal, Nintya, dan Munifatul, 2006).

Lama perendaman media tanam hidrogel mempengaruhi ukuran hidrogel. Adanya perbedaan ukuran hidrogel menunjukkan kemampuan masing-masing ukuran dalam menyerap air. Kemampuan penyerapan air dipengaruhi oleh luas permukaan dan bahan penyusun gel, semakin luas permukaan bahan maka semakin cepat proses penyerapan air oleh bahan. Pendapat ini seperti yang diungkapkan Islami dan Utomo (1995), bahwa luas permukaan suatu benda dan bahan penyusun benda, sangat mempengaruhi laju penyerapan.

Pengaruh Konsentrasi Pupuk Daun Gandasil D Terhadap Pertumbuhan Tanaman Aglaonema (Aglaonema sp) Indoor

Pengaruh konsentrasi pupuk daun Gandasil D menunjukkan tidak berpengaruh nyata pada pengamatan pertambahan tinggi tanaman semua umur tanaman, jumlah daun umur 2 MST dan 4 MST, serta pada bobot akar. Pengaruh konsentrasi pupuk daun Gandasil D berpengaruh nyata pada jumlah daun umur tanaman 6 MST dan panjang akar.

Konsentrasi pupuk daun Gandasil D tidak berpengaruh nyata diduga karena cara yang dilakukan dalam pengaplikasiannya yang kurang tepat. Pemupukan melalui daun dapat mengalami kegagalan apabila konsentrasi larutan pupuk yang diberikan tidak sesuai, sehingga akan mengakibatkan afektivitas pupuk menjadi berkurang.

Konsentrasi pupuk daun Gandasil D berpengaruh nyata terhadap jumlah daun umur tanaman 6 MST dan panjang akar karena kandungan yang terdapat oleh pupuk daun Gandasil D yang menunjang jumlah daun dan panjang akar. Gandasil D merupakan pupuk daun yang diperuntukkan untuk merangsang pertumbuhan daun dan tunas-tunas baru. Sebab unsur hara makro yang terdapat didalamnya dominan Nitrogen. Dalam pupuk daun Gandasil D juga terkandung unsur Fosfat. Unsur Fosfat merupakan unsur yang utama yang mendorong terbentuknya akar.

Pupuk daun Gandasil D terkandung unsur Nitrogen 14%, Fosfat 12%, Kalium 14%, Magnesium 1% dan sisanya adalah unsur dan senyawa seperti Mangan (Mn), Boron (B), Tembaga (Cu), Kobalt (Co), Seng (Zn). Terdiri atas pupuk anorganik makro dan mikro, berbentuk serbuk dan berfungsi untuk pertumbuhan vegetatif (Lingga, 2007) (Widi, Sri, dan Agus, 2016).

Menurut Riadi (2009) bahwa faktor yang mempengaruhi keberhasilan pemupukan melalui daun adalah konsentrasi larutan, jenis tanaman dan waktu pemberian. Menurut Lingga dan Marsono (2004) bahwa penggunaan pupuk daun dengan konsentrasi berlebih akan menyebabkan gejala daun-daun seperti terbakar dan layu, kering dan akhirnya gugur. Hal ini tentunya sangat mengganggu pertumbuhan dan hasil tanaman. Adapun anjuran dari pupuk Gandasil D adalah 1-3 g/liter air dengan interval waktu pemberian 7-10 hari sekali (Mariyatul Qibtyah, 2015).

Pengaruh Interaksi Lama Perendaman Media Hidrogel Dan Konsentrasi Pupuk Daun Gandasil D Terhadap Pertumbuhan Tanaman Aglaonema (Aglaonema sp) Indoor

Berdasarkan hasil sidik ragam menunjukkan bahwa interaksi lama perendaman media hidrogel dan konsentrasi pupuk Gandasil D terhadap pertambahan tinggi tanaman, jumlah daun, panjang akar, dan bobot akar tidak berpengaruh nyata.

Tidak adanya pengaruh interaksi interaksi lama perendaman media hidrogel dan konsentrasi pupuk Gandasil D terhadap parameter pemangatan disebabkan karena pengaplikasian pupuk daun Gandasil D yang disemprot keseluruh permukaan daun sehingga tidak adanya kontak antara hidrogel dan pupuk daun Gandasil D.

KESIMPULAN DAN SARAN

Ulangan tidak berpengaruh nyata terhadap jumlah daun dan panjang akar. Ulangan berpengaruh nyata pada bobot akar umur 6 MST. Ulangan berpengaruh sangat nyata terhadap pertambahan tinggi tanaman pada semua umur amatan. Perlakuan tidak berpengaruh nyata terhadap pertambahan tinggi tanaman pada semua umur amatan, jumlah daun umur 2 MST dan bobot akar. Perlakuan berpengaruh nyata terhadap jumlah daun umur 4 MST dan 6 MST. Perlakuan berpengaruh sangat nyata terhadap panjang akar. Pengaruh lama perendaman media hidrogel tidak berpengaruh nyata terhadap pertambahan tinggi tanaman pada semua umur amatan, jumlah daun umur 2 MST dan 4 MST, serta bobot akar. Pengaruh lama perendaman media hidrogel berpengaruh nyata terhadap jumlah daun pada umur 6 MST. Pengaruh lama perendaman media hidrogel berpengaruh sangat nyata terhadap panjang akar. Konsentrasi pupuk daun Gandasil D tidak berpengaruh nyata terhadap pertambahan tinggi tanaman semua umur amatan dan bobot akar. Konsentrasi pupuk daun Gandasil D berpengaruh nyata terhadap jumlah daun umur 6 MST dan panjang akar. Interaksi lama perendaman media hidrogel dengan konsentrasi pupuk daun Gandasil D terhadap pertumbuhan tanaman aglaonema tidak berpengaruh nyata.

DAFTAR PUSTAKA

Anita, T. (2010). Budidaya tanaman hias Aglaonema di Deni Nursery and Gardening. Fakultas Pertanian Universitas Sebelas Maret, Surakarta.

Anonim. (2006). Tanaman hias dengan media tanam hydrogel. Retrieved from http://www.horties.com/hydrogel/default.htm

Budiana, N. S. (2007). Memupuk tanaman hias. Jakarta: Penebar Swadaya.

Faisal, N., & Manifatul. (2006). Kapasitas penyerapan dan penyimpanan air pada berbagai ukuran gel dari tepung kerajinan untuk pembuatan media tanam jeloponik. Fakultas MIPA, Universitas Diponegoro, Semarang.

Islami, T., & Utomo, W. H. (1995). Hubungan tanah, air, dan tanaman. IKIP Semarang Press, Semarang. Kumiawan, J. (2006). Panduan praktis perawatan Aglaonema. Jakarta: Agro Media Persada.

Laode, A. M. (1991). Budidaya rumput laut. Yogyakarta: Kanisius.

Leman. (2006). Tanaman pembawa keberuntungan: Jenis perawatan dan perbanyakan. Jakarta: Penebar Swadaya.

Lingga, P. (1992). Hidroponik bercocok tanam tanpa tanah. Jakarta: Penebar Swadaya.

Lingga, P. (1994). Petunjuk penggunaan pupuk. Jakarta: Penebar Swadaya.

Lingga, P. (1995). Pengantar penggunaan pupuk. Jakarta: Penebar Swadaya.

Mariyatul Qibtyah. (2015). Pengaruh konsentrasi pupuk daun Gandasil D dan dosis pupuk guano terhadap pertumbuhan dan produksi tanaman cabai merah. Fakultas Pertanian, Universitas Islam Darul Ulum, Lamongan.

Prihmantoro. (1995). Hidroponik tanaman sayur-sayuran. Jakarta: Penebar Swadaya.

Purwanto, A. W. (2006). Aglaonema, pesona kecantikan sang ratu daun. Yogyakarta: Kanisius.

Putri, S., Sulistiorini, S., & Tjondro. (1990). Aglaonema. Jakarta: Penebar Swadaya.

Ratih Kumala Dewi. (2010). Pengaruh penambahan pupuk organik Amisong cair terhadap pertumbuhan tanaman Aglaonema rindu dan pengajarannya. Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Palembang, Palembang.

Subagio, H. A. (2009). Pengaruh kandungan hidrogel. Departemen Agronomi dan Hortikultura, Institut Pertanian Bogor, Bogor.

Subono, M., & Andoko, A. (2005). Meningkatkan kualitas Aglaonema (Cetakan ke-4). Depok: Agromedia Pustaka.

Suryaningrum, T. D. (1991). Sifat fisiko kimia karaginan dari beberapa lokasi budidaya laut di Indonesia. Prosiding Temu Karya Ilmiah, Badan Penelitian Perikanan Laut, Slipi, Jakarta.

Sutejo, M. M. (1999). Pupuk dan cara pemupukan. Jakarta: Rineka Cipta.

Tangkeallo, Y. P. (2020). Budidaya Aglaonema di masa pandemi. Retrieved June 25, 2020, from http://cybex.pertanian.go.id/mobile/artikel/93449/Budidaya-Aglaonema-aglaonema-Di-Masa-Pandemi-

Winarno, F. G. (1990). Teknologi pengolahan rumput laut. Jakarta: Pustaka Sinar Harapan.