Perbandingan Algoritma Machine Learning Untuk Sentimen Analisis Game Bus Simulator Indonesia

Hery Oktafiandi, Winarnie Winarnie

Abstract


This study aims to perform sentiment analysis on user reviews of the Bus Simulator Indonesia (BUSSID) application, developed by Maleo from Surabaya and released in 2017. A total of 10,000 reviews were collected from the Google Play Store using web scraping techniques and labeled based on ratings; reviews with ratings above 3 were considered positive, while those with ratings of 3 or below were considered negative. The reviews were then processed through case folding, cleaning, tokenizing, stopword removal, and stemming, and their features were extracted using the TF-IDF method. The data was split into 70% for training and 30% for testing. Three machine learning algorithms were applied: Naive Bayes Classifier (NBC), Stochastic Gradient Descent (SGD), and Support Vector Machine (SVM). The results showed that SVM had the highest accuracy at 79%, followed by SGD at 77%, and NBC at 76%. Evaluation using metrics such as accuracy, precision, recall, and f1-score indicated that this analysis provides valuable insights for BUSSID developers to improve the application’s quality.

 sentiment analysis, 


Keywords


sentiment analysis;Naive Bayes Classifier; Stochastic Gradient Descent; Support Vector Machine; TF-IDF; Bus Simulator Indonesia

Full Text:

PDF

References


M. H. Asnawi, I. Firmansyah, R. Novian, and R. S. Pontoh, “Comparison of Naïve Bayes, K-NN, and SVM Algorithms in Social Media Sentiment Classification,” Semin. Nas. Stat. X, vol. 10, no. 1, 2021.

O. Irnawati and K. Solecha, “Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Berbasis Particle Swarm Optimization Pada Analisis Sentimen Ulasan Aplikasi Flip,” J. Inf. Eng. Educ. Technol., vol. 7, no. 1, pp. 10–15, 2023, doi: 10.26740/jieet.v7n1.p10-15.

S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 10–19, 2023, doi: 10.57152/malcom.v4i1.983.

G. Ginabila and A. Fauzi, “Analisis Sentimen Terhadap Pemutar Musik Online Spotify Dengan Algoritma Naive Bayes dan Support Vector Machine,” J. Ilm. Ilk. - Ilmu Komput. Inform., vol. 6, no. 2, pp. 111–122, 2023, doi: 10.47324/ilkominfo.v6i2.180.

A. Puji Astuti, S. Alam, and I. Jaelani, “Komparasi Algoritma Support Vector Machine dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo,” J. Bangkit Indones., vol. 11, no. 2, pp. 1–6, 2022, doi: 10.52771/bangkitindonesia.v11i2.196.

A. J. N. Kisma, C. R. A. Widiawati, and S. Suliswaningsih, “Analysis of applications in Playstore based on Rating and Type using Naive Bayes and Logistic Regression,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 2, pp. 174–184, 2023, [Online]. Available: http://jurnal.mdp.ac.id

A. P. Prastyo and A. Y. P. Yusuf, “Sentimen Analisis Ulasan Pengguna Linkedin Pada Aplikasi Google Playstore Dengan Metode Decision Tree,” Jurnal Teknologi Informasi, vol. 8, no. 1. pp. 74–82, 2024. doi: 10.36294/jurti.v8i1.3870.

H. Oktafiandi, W. Winarnie, and ..., “Perbandingan Algoritma untuk Analisis Sentimen Terhadap Google Play Store Menggunakan Machine Learning,” J. Ekon. dan …, vol. 11, no. 2, pp. 16–21, 2023, [Online]. Available: http://e-journal.polsa.ac.id/index.php/jneti/article/view/234%0Ahttp://e-journal.polsa.ac.id/index.php/jneti/article/download/234/159

W. Kurnia, “Sentimen Analisis Aplikasi E-Commerce Berdasarkan Ulasan Pengguna Menggunakan Algoritma Stochastic Gradient Descent,” J. Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 138–143, 2023.

M. Diki Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine Sentiment Analysis of Mola Application Reviews on Google Play Store Using Support Vector Machine Algorithm,” J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022.

E. Indrayuni, A. Nurhadi, and D. A. Kristiyanti, “Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc,” Fakt. Exacta, vol. 14, no. 2, p. 64, 2021, doi: 10.30998/faktorexacta.v14i2.9697.

H. Junianto, P. Arsi, B. A. Kusuma, and D. I. S. Saputra, “Evaluasi Aplikasi Raileo Melalui Analisis Sentimen Ulasan Playstore Dengan Metode Naive Bayes,” SINTECH (Science Inf. Technol. J., vol. 7, no. 1, pp. 27–40, 2024, doi: 10.31598/sintechjournal.v7i1.1505.

M. F. Ravizaldi and N. Z. Saputra, “Analisis Kearifan Lokal Pada Game Bus Simulator Indonesia,” pp. 750–755, 2022.

H. Z. Muflih, A. R. Abdillah, and F. N. Hasan, “Analisis Sentimen Ulasan Pengguna Aplikasi Ajaib Menggunakan Metode Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 3, pp. 1613–1621, 2023, doi: 10.30865/klik.v4i3.1303.




DOI: https://doi.org/10.36294/jurti.v8i2.4666

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JurTI (Jurnal Teknologi Informasi)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JurTI (Jurnal Teknologi Informasi) terindex :

 

JurrTI (Jurnal Teknologi Informasi)

Program Studi Program Studi Teknik Informatika, Fakultas Teknik, Universitas Asahan.

Jl. Jend. Ahmad Yani, Kisaran – 21224  – Sumatera Utara

Telp/WA : 082370952109 - 081268777854

E-Mail : jurtischolar@gmail.com

JurTI (Jurnal Teknologi Informasi) s licensed under a Creative Commons Attribution-ShareAlike 4.0 International License