Deteksi Wajah Berbasis Facial Landmark Menggunakan OpenCV Dan Dlib

RR Puji Hajar Sejati, Rodhiyah Mardhiyyah

Abstract


Computer science and information technology have advanced in a variety of sectors that were previously unachievable due to constraints such as hardware. Computer vision can be used to recognize an object using computer science. Objects can be recognized by taking or recording photos or videos and then processing them using specific tools and methodologies. The goal of the facial landmark-based face detection research using OpenCV and Dlib is to perform face detection in people so that it can be used for a variety of purposes in the future. The strategy employed in this study was the usage of facial landmarks using OpenCV and Dlib to improve face detection accuracy. Face detection has been effectively carried out based on facial landmark points, according to the findings of testing the entire system. Face landmark-based face detection is more accurate using the OpenCV Dlib, which can be seen during processing in the OpenCV Dlib, which can precision photos based on facial movements.

Keywords


Computer Vision, Face Detection, Facial Landmark, OpenCV, Dlib

Full Text:

PDF

References


O. Victoria and I. P. Solihin, “Pendeteksi Wajah Secara Realtime Menggunakan Metode Eigenface,” Semin. Nas. Inform. Sist. Inf. Dan Keamanan Siber, pp. 126–131, 2018.

T. C. A.-S. Zulkhaidi, E. Maria, and Yulianto, “Pengenalan Pola Bentuk Wajah dengan OpenCV,” J. Rekayasa Teknol. Inf., vol. 3, no. 2, p. 181, 2020, doi: 10.30872/jurti.v3i2.4033.

A. Sulistyowati, Y. S. Hariyani, and A. Novianti, “Perancangan Aplikasi Pembaca Warna dan Bentuk Berbasis Pengolahan Citra untuk Daftar Katalog Perpustakaan,” e-Proceeding Appl. Sci., vol. 4, no. 3, pp. 2554–2566, 2018.

S. Sharma, K. Shanmugasundaram, and S. K. Ramasamy, “FAREC - CNN based efficient face recognition technique using Dlib,” Proc. 2016 Int. Conf. Adv. Commun. Control Comput. Technol. ICACCCT 2016, pp. 192–195, 2016, doi: 10.1109/ICACCCT.2016.7831628.

A. D. Purwanto and F. Utaminingrum, “Deteksi Pergerakan Mata dan Kedipan Untuk Memilih Empat Menu Display Menggunakan Probabilitas Berdasarkan Facial Landmark,” urnal Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10865–10874, 2019.

R. Herawati, “Drowsinesslab: Aplikasi Desktop Deteksi Kantuk Berbasis Facial Landmark menggunakan Open CV, Dlib, dan Tkinter,” Universitas Islam Negeri Sunan Gunung Djati, 2021.

L. Variz, L. Piardi, P. J. Rodrigues, and P. Leitao, “Machine Learning Applied to an Intelligent and Adaptive Robotic Inspection Station,” IEEE Int. Conf. Ind. Informatics, pp. 290–295, 2019, doi: 10.1109/INDIN41052.2019.8972298.

R. Y. Endra, A. Cucus, F. N. Affandi, and M. B. Syahputra, “Deteksi Objek Menggunakan Histogram of Oriented Gradient (HOG) untuk Model Smart Room,” Explor. (Jurnal Sist. Inf. dan Telemat., vol. 9, no. 2, pp. 99–105, 2018.

A. F. Randa, N. Suciati, and D. A. Navastara, “Implementasi Metode Kombinasi Histogram of Oriented Gradients dan Hierarchical Centroid untuk Sketch Based Image Retrieval,” J. Tek. ITS, vol. 5, no. 2, pp. 311–316, 2016, doi: 10.12962/j23373539.v5i2.16984.

M. Fauziah, “Perancangan dan Implementasi Sistem Deteksi Pergerakan Kepala, Mata, dan Alis Berbasis Machine Learning,” Institut Teknologi Bandung, 2021.

Ulla Delfana Rosiani, Rosa Andrie Asmara, and Nadhifatul Laeily, “Penerapan Facial Landmark Point Untuk Klasifikasi Jenis Kelamin Berdasarkan Citra Wajah,” J. Inform. Polinema, vol. 6, no. 1, pp. 55–60, 2020, doi: 10.33795/jip.v6i1.328.

X. Tang, F. Guo, J. Shen, and T. Du, “Facial Landmark Detection by Semi-Supervised Deep Learning,” Neurocomputing, vol. 297, no. February 2018, pp. 22–32, 2018, doi: 10.1016/j.neucom.2018.01.080.

R. A. A. Manullang, “Identifikasi Wajah Menggunakan Metode Eigenfaces dan Euclidean Distance,” Univeristas Sriwijaya, 2019.




DOI: https://doi.org/10.36294/jurti.v5i2.2220

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JurTI (Jurnal Teknologi Informasi)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JurTI (Jurnal Teknologi Informasi) terindex :

 

JurrTI (Jurnal Teknologi Informasi)

Program Studi Program Studi Teknik Informatika, Fakultas Teknik, Universitas Asahan.

Jl. Jend. Ahmad Yani, Kisaran – 21224  – Sumatera Utara

Telp/WA : 082370952109 - 081268777854

E-Mail : jurtischolar@gmail.com

JurTI (Jurnal Teknologi Informasi) s licensed under a Creative Commons Attribution-ShareAlike 4.0 International License