Image Fusion: Pengujian Terhadap Penggabungan Citra Satelit Himawari-8 Dan Spot Untuk Pemantauan Ketinggian Permukaan Air Laut

Andriani Putri, Sri Azizah Nazhifah

Abstract


Abstract - High spatial and temporal resolutions of satellite imagery are necessary to monitor rapid environment changes at finer scales. However, no single satellite can produce images with both high spatial and temporal resolutions yet. To address this issue, spatio-temporal image fusion algorithms were proposed to synthesize high spatial and temporal resolution images. For example, Landsat 8 with a spatial resolution of 30 m has been applied on water level detection, but it cannot capture dynamic events due to its low temporal resolution. On the other hand, The Advanced Himawari Imager (AHI) 8 only needs 10 minutes to watch the hemisphere once, but its coarse spatial resolution hampers the accurate mapping of sea level change. While our previous study has examined the feasibility of blending AHI and Landsat images, this study aims at blending SPOT imagery with AHI imagery to monitor the dynamic and local behavior of sea level changes. To be specific, first, images in the testing area are calibrated to surface reflectance and co-registered. The Normalized Difference Water Index (NDWI) is then calculated from SPOT and Himawari-8 images to be an input for the image fusion process. This study applies the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) as the image fusion method. While water level changes dynamically, traditional methods are largely affected by the changes of land cover. Hence, this study constructs a knowledge database to select proper land cover maps as an image fusion input. Finally, the evaluation result shows that the proposed solution can retrieve accurate water coverage with high spatial and temporal resolutions.

Keywords - Spatial-temporal image fusion, STARFM, Himawari-8, SPOT, sea level monitoring

 

Abstrak - Resolusi spasial dan temporal yang tinggi dari citra satelit diperlukan untuk memantau perubahan lingkungan yang cepat pada skala yang lebih baik. Namun, belum ada satupun satelit yang dapat menghasilkan gambar dengan resolusi spasial dan temporal yang tinggi. Untuk mengatasi masalah ini, proses penggabungan citra (image fusion) diaplikasikan untuk mensintesis citra dengan resolusi spasial dan temporal yang tinggi. Misalnya, Landsat 8 dengan resolusi spasial 30 m telah diterapkan pada deteksi ketinggian air, tetapi tidak dapat menangkap peristiwa dinamis karena resolusi temporal yang rendah. Di sisi lain, The Advanced Himawari Imager (AHI) 8 hanya membutuhkan waktu 10 menit untuk mengamati seluruh bumi dalam sekali orbit, namun resolusi spasialnya yang buruk dapat menghambat pemetaan perubahan permukaan air laut. Sementara studi sebelumnya telah menguji kelayakan untuk penggabungan citra AHI dan Landsat, maka studi ini bertujuan untuk menguji penggabungan citra SPOT dengan citra AHI untuk memantau dinamika dan perubahan permukaan air laut. Untuk lebih spesifik, pertama, citra di area studi dikalibrasi ke nilai surface reflectance dan kemudian co-registered. Normalized Difference Water Index (NDWI) kemudian dihitung dari citra SPOT dan Himawari-8 untuk dijadikan input saat proses penggabungan citra. Penelitian ini menggunakan Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) sebagai metode penggabungan citra. Sementara ketinggian air berubah secara dinamis, metode tradisional yang sudah ada sebagian besar dipengaruhi oleh perubahan tutupan lahan. Oleh karena itu, penelitian ini membangun database untuk memilih peta tutupan lahan yang tepat sebagai input penggabungan citra. Akhirnya, hasil evaluasi dari pengujian solusi yang diusulkan dapat memperoleh lahan air yang akurat dengan resolusi spasial dan temporal yang tinggi.

Kata Kunci - Penggabungan citra spasial-temporal, STARFM, Himawari-8, SPOT, pemantauan ketinggian air laut


Keywords


Spatial-temporal image fusion, STARFM, Himawari-8, SPOT, sea level monitoring

Full Text:

PDF

References


M. Kostiuk, “Using Remote Sensing Data to Detect Sea Level Change”, Pecora 15., pp. 1-9, 2002.

K. Kabiri and M. Moradi, “Landsat-8 imagery to estimate clarity in near-shore coastal waters: Feasibility study - Chabahar Bay, Iran”, Elsevier, vol. 125, pp. 44-53, 2016

A. Dhore and C. Veena, “A New Pan-Sharpening Method Using Joint Sparse FI Image Fusion Algorithm”, International Journal of Engineering Research and General Science, 2(4), 2014

F. Gao, J. G. Masek, M. Schwaller, F. Hall, “On the blending of Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance”, IEEE Transactions on Geoscience and Remote Sensing, pp. 2207-2218, 2006

P. Wu, , H. Shen, , L. Zhang, , F.-M. Göttsche, “Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature”, Remote Sensing of Environment, pp. 169-181, 2015

T. Hilker, , M. A. Wulder, N. C. Coops , J. Linke, McDermid, , J. G. Masek, , F.Gao, J. C. White, “A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS”, Remote Sensing of Environment, pp. 1613-1627, 2009

X. Zhu, J. Chen, F.Gao, X. Chen, J. G Masek, “An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions”, Remote Sensing of Environment, pp. 2610-2623, 2010

S. K. McFeeters, “The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features”, International journal of remote sensing, pp. 1425-1432, 1996

H. Xu, “Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery”, International journal of remote sensing, pp. 3025-3033, 2006

A.A. Jarihani, T.R. McVicar, T.G Van Niel, I.V. Emelyanova, J.N. Callow, K. Johansen, “Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “Index-then-Blend” and “Blend-then-Index” Approaches”. Remote Sens., pp. 9213–9238, 2014.




DOI: https://doi.org/10.36294/jurti.v5i1.2039

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JurTI (Jurnal Teknologi Informasi)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JurTI (Jurnal Teknologi Informasi) terindex :

JurTI (Jurnal Teknologi Informasi) dapat diakses melalui :

 

 

Creative Commons License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.