Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset

Derry Alamsyah, Dicky Pratama

Abstract


Abstract - session recognition is an interesting topic, where facial expressions in today's technological advances can support several fields such as health, business, and so on. Facial expression recognition can be done using the extraction of certain features. Meanwhile, Convolutional Neural Network (CNN) can recognize an object in the image through the features found by itself in the convolution process. By using CNN's advantages, this study aims to see CNN's performance in facial expressions of happiness and sadness in unideal data conditions. So based on this research, on the FER2013 dataset, CNN using the Adamax optimizer produced a fairly good performance where the value is given is 66% compared to Adam, N-Adam, and SGD.

Keywords  -   CNN, Facial Expression, FER-2013

 

Abstrak – Pengenalan ekspresi merupakan topik penelitian yang menarik, dimana peran ekspresi wajah dalam kemajuan teknologi saat ini dapat mendukung beberapa bidang seperti kesehatan, bisnis, dan sebagainya. Pengenalan wajah dapat dilakukan dengan menggunakan ekstraksi fitur-fitur tertentu. Sementara itu, Convolutional Neural Network (CNN) dapat mengenali objek pada citra melalui fitur yang ditemukannya sendiri dalam proses konvolusinya. Dengan menggunakan keunggulan CNN, maka penelitian ini bertujuan untuk mengetahui performa CNN dalam mengenali ekspresi wajah bahagia (happy) dan sedih (sad) pada kondisi data tidak ideal. Maka berdasarkan hasil penelitian ini, pada dataset FER2013, CNN dengan menggunakan Adamax optimizer menghasilkan performa yang cukup baik dimana akurasi yang diberikan adalah sebesar 66% dibandingkan dengan Adam, N-Adam, dan SGD.

Kata Kunci - CNN, Ekspresi Wajah, FER-2013.


Keywords


CNN; Facial Expression; FER-2013

Full Text:

PDF

References


S. S. Shafira, N. Ulfa, H. A. Wibawa and Rismiyati, "Facial Expression Recognition Using Extreme Learning Machine," 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 2019, pp. 1-6, doi: 10.1109/ ICICoS48119.2019.8982443.

Samadiani N, Huang G, Cai B, Luo W, Chi CH, Xiang Y, He J. A Review on Automatic Facial Expression Recognition Systems Assisted by Multimodal Sensor Data. Sensors (Basel). 2019 Apr 18;19(8):1863. doi: 10.3390/s19081863. PMID: 31003522; PMC-ID: PMC6514576.

S. A. Rizwan, A. Jalal and K. Kim, "An Accurate Facial Expression Detector using Multi-Landmarks Selection and Local Transform Features," 2020 3rd International Conference on Advancements in Computational Sciences (ICACS), Lahore, Pakistan, 2020, pp. 1-6, doi: 10.1109/ ICACS47775.2020.9055954.

Y. He and X. He, "Facial Expression Recognition Based on Multi-Feature Fusion and HOSVD," 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 2019, pp. 638-643, doi: 10.1109/ITNEC.2019.8729003.

Ma, D.S., Correll, J. & Wittenbrink, B. “The Chicago face database: A free stimulus set of faces and norming data”. Behav Res 47, 1122–1135 2015. https://doi.org/ 10.3758/s13428-014-0532-5

T. T. Kaleekal and J. Singh, "Facial Expression Recognition using Hahn Moment on Facial Patches," 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 2019, pp. 1338-1344, doi: 10.1109/RTEICT46194.2019. 9016953.

M. Garcia Villanueva and S. Ramirez Zavala, "Deep Neural Network Architecture: Application for Facial Expression Recognition," in IEEE Latin America Transactions, vol. 18, no. 07, pp. 1311-1319, July 2020, doi: 10.1109/TLA.2020.9099774.

V. Tümen, Ö. F. Söylemez and B. Ergen, "Facial emotion recognition on a dataset using convolutional neural network," 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, 2017, pp. 1-5, doi: 10.1109/IDAP.2017. 8090281.

Mollahosseini, A., Chan, D., and Mahoor, M. H., “Going Deeper in Facial Expression Recognition using Deep Neural Networks”, arXiv e-prints, 2015/

Suyanto, “Machine Learning Tingkat Dasar dan Lanjut”, 2018, Informatika.




DOI: https://doi.org/10.36294/jurti.v4i2.1714

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JurTI (Jurnal Teknologi Informasi)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JurTI (Jurnal Teknologi Informasi) terindex :

JurTI (Jurnal Teknologi Informasi) dapat diakses melalui :

 

 

Creative Commons License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.